韩信点兵 3人一组余2 5人一组余3 7人一组余4希望学个过程上去

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 05:05:13
韩信点兵 3人一组余2 5人一组余3 7人一组余4希望学个过程上去

韩信点兵 3人一组余2 5人一组余3 7人一组余4希望学个过程上去
韩信点兵 3人一组余2 5人一组余3 7人一组余4
希望学个过程上去

韩信点兵 3人一组余2 5人一组余3 7人一组余4希望学个过程上去
所求数除以7余4的数有:4,11,18,25,……
除以5余3的数个位必须为3或8.
这个数可以是:18,53,88,……
18/3余0 53/3正好余2
所以士兵至少有53人.

韩信点兵
汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令...

全部展开

韩信点兵
汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:
三人同行七十稀,
五树梅花开一枝,
七子团圆正月半,
除百零五便得知。”
刘邦出的这道题,可用现代语言这样表述:
“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”
《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:
首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。
所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。
所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。
所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。
又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。
而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。
这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中。一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。
请你试一试,用刚才的方法解下面这题:
一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数。
(112×2+120×3+105×5+168k,取k=-5得该数为269。)

收起

秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。
物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?

全部展开

秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。
物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?
变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。
这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。
这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。
我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?
这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。
例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。
最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。
为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人。
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1。
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4。
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,
70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)
能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。
我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?
为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。
例如:试求一数,使之用4除余3,用5除余2,用7除余5。
我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。
一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。
《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
参考资料:少年百科

收起

韩信点兵 3人一组余2 5人一组余3 7人一组余4希望学个过程上去 韩信点兵,4人一组余3人,7人一组余6人,11人一组余5人,问他手下最少有多少兵? 有多人,3人一组余2人,5人一组4人,7人一组余6人,9人一组余8人,11人一组正好,问多少人 韩信点兵,4人一组,剩2(N)个人,7人一组,剩2(N)个人,12人一组,余2(N)个人,他手下最少有多少兵韩信点兵,4人一组,剩2(N)个人,7人一组,剩2(N)个人,12人一组,余2(N)个人,问他手下最少有 某年级有学生200-300人,3人一组余1人,5人一组余2人,7人一组余3人,请问一共有多少人?请写出算式, 一次会议人数在200——300人之间,若3人一组余1人,若5人一组余2人,若7人一组余3人,参加会议的有多少人 学校田径队分组,如果每3人一组余2人,每5人一组余3人,每7人一组也余2人.这个田径队至少有多少人? 学校田径队分组,如果每3人一组余2人,每5人一组余3人,每7人一组也余2人,这个田径队至少有多少人?要算式 一群人在200--300人之间,若3人分一组余1个人,5人分一组余2人,7人分一组余3 人,问共有几人?请给出详细的解答过程,谢谢! 会议在200-300人之间,若3人一组余1人,5人一组余2人,7人一组余3人,参加会议的有几人? 一次会议人数在200~300之间,若3人一组余1人,若5人一组余2人,若7人一组余3人,这次会议参加的人数是多少? 三个班的同学在一起做游戏,如果3人一组余2人,5人一组也余2人,7人一组还是余2人,求三个班的总人数 韩信点兵,3个人一组,剩余0个人,7个人一组,剩6个人,12个人一组,余0个人,问他手下最少有多少兵?要求算式! 韩信点兵问题:3人一排余2,5人一排余3,7人一排余2.算出1073人,怎样算的?急用!用方程思想 某年级人数在200-300人之间,若3人一组余1人,若5人一组余3人,若7人一组余5人,该年级有_____学生. 某年级学生人数在200—300之间,若3人一组余1人,若5人一组余3人,若7人一组余5人. 同学们做游戏,若7人一组余3人,6人一组余2人,这个班最少有多少人? 同学们做游戏若7人一组余3人,6人一组余2人.这个班最少多少人?