对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件)

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 13:03:12
对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件)

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件)
对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件)

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件)
对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的充要条件.

必要条件

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条件) 对于数列极限来说,若存在任意给定的ε,无论其多么小,总存在正整数N. 证明:对任意给定的正整数n>1,都存在连续n个合数 证明:对任意给定的正整数n,存在由若干个1和若干个0组成的正整数a,使n|a 关于极限大一高数的几个问题1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a| 弱弱的问一句,李永乐全书上关于求数列极限的一个定理p12页,若对任意数列{an},若满足|an-A|《k|a(n-1)-A| (n=2,3,.),其中0无穷)an就等于A了?,书上定义不是说对任意给定的e,总存在正整数N,当n>N时,不 李永乐全书上关于求数列极限的一个定理p12页,若对任意数列{an},若满足|an-A|《k|a(n-1)-A| (n=2,3,.),其中0无穷)an就等于A了?,但是书上定义不是说对任意给定的e,总存在正整数N,当n>N时,不等式|xn-a|无 初等数论,证明:对于任意给定的正整数n>1,存在n个连续的合数. 关于数列极限定义的疑问设为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn-a|呵呵,我自己又想了想,不知对不?ε是可以取任意小的 收敛的条件判断“对任意给定的数e属于(0,1),总存在正整数N,当n大于等于N时,恒有|Xn-a|小于等于2e”是数列{Xn}收敛于数a的()A.充分B.必要C.充要D.既非充分也非必要 数列极限的定义的一个疑问!根据数列极限定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|N=1时,|X2 - 2|=0 数列极限定义数列如果存在常数a,对于任意的给定的正数ε,总存在正整数N,使得n>N时,不等式 │Xn-a │N?完全没有理解, 高数——用定义法证明数列极限的思路”设{xn}为一数列,如果存在常数a,对任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,不等式|xn-a|N”用语言描述一下,到底代表的是啥. 怎么理解数列极限的定义定义是这样写的:设有数列{xn}与常数a,若对任意给定的正数ε(不论它多么小),总存在正整数N,使得对于n>N时的一切xn,不等式|xn-a| 关于极限定义的理解,有点搞不懂.设{Sn}为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn-a|0,使得当0 证明:对于任意给定的正整数n,存在n项的等差正整数列,它们中的项两两互质 对数列极限概念的疑问书上写的数列极限的定义:有一数列{an},如果存在常数a,对于任意给定的正数Э,总存在正整数N,当n>N时,|an-a|我的意思是:比如,在非常数列{an}中,第十项是a10,第十一项是a11, 已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E+A可逆